

How has the COVID-19 pandemic changed public & private healthcare? The case study of Thailand

Dr Phusit Prakongsai, MD. Ph.D. Acting Senior Advisor on Health Promotion, Office of Permanent Secretary, Ministry of Public Health of Thailand 4th January 2021

Cumulative confirmed COVID-19 cases per million people, Jan 2, 2021 The number of confirmed cases is lower than the number of actual cases; the main reason for that is limited testing.

The situation of COVID-19 pandemic at the global level and in Thailand as of January 3rd, 2021

Impact of COVID-19 pandemic on the Thai healthcare systems

Public sector

- Shift of government health budget and human resources for health, and clinical staff in responses to COVID-19,
- Reduction in government health budget resulting in negative impact of health care services for other health priorities,
- Decrease in in-patient volume due to cancellation of elective care, and the government policy in reducing the number of inpatients for other diseases,
- Decrease in outpatient volume due to patients not presenting, closure of some outpatient disease specific consultation clinics e.g. rehabilitation, palliative care, etc.
- Prolonged the follow-up period for chronic NCDs patients,
- Government or public transport lockdowns hindering access to the health facilities for patients,
- Clinical staff deployed to provide COVID-19 relief,
- In some areas, insufficient Personal Protective Equipment (PPE) available for health care providers to provide services.

Private sector

- Almost zero of foreigner's patients in top-five private hospitals in Thailand relying on medical tourism and medical hub policies,
- However, the private sector has played more active roles in COVID-19 screening and testing, and curative care,
- Serve as part of the alternative state quarantine and hospital quarantine for foreigners,

Public health system

- Strengthening disease surveillance system, primary health care, VHVs, and community health system,
- Accelerate the progress and advancement of telemedicine, digital health, and clinical trials for vaccine development in Thailand,

Global development of COVID-19 Vaccines and current situation in Thailand

How some of the Covid-19 vaccines compare

Company	Туре	Doses	How effective*	Storage	Cost per dose		
Stord Uni- Oxford Uni- AstraZeneca	Viral vector (genetically modified virus)	×2 /	62-90%	Regular fridge temperature	£3 (\$4)		
) Moderna	RNA (part of virus genetic code)	x2 /	95%	-20C up to 6 months	£25 (\$33)		
Pfizer- BioNTech	RNA	×2 /	95%	-70C	£15 (\$20)		
Gamaleya (Sputnik V)	Viral vector	×2 /	92%	Regular fridge temperature (in dry form)	£7.50 (\$10)		
*preliminary phase three results, not yet peer-reviewed							
Source: Respective companies, WHO							

COVID-19 Vaccine Pipeline

Candidate	Sponsor	Trial Phase	Institution	Funding
Inactivated vaccine	Wuhan Institute; Sinopharm	Phase 3	Henan Provincial CDC	Ministry of Science and Technology, China
CoronaVac	Sinovac	Phase 3	Sinovac Research and Development Co.	Sinovac Research and Development Co.
mRNA-1273	Moderna	Phase 3	Kaiser Permanente Washington Health Research Institute	Operation Warp Speed; NIAID, BARDA (\$483 million)
BCG live-attenuated vaccine	U Melbourne and Murdoch; Radboud University Med Ctr; Mass Gen Hosp	Phase 2/3	Same as Sponsor	Murdoch Children's Research Institute; UMC Utrecht
AZD1222	The University of Oxford; AstraZeneca; IQVIA	Phase 2/3	The Univ of Oxford, the Jenner Institute	Operation Warp Speed; UK Ministry of Health; The University of Oxford; BARDA
BNT162	Pfizer, BioNTech	Phase 2/3	Multiple study sites in Europe & N Amer	Pfizer; BioNTech
Ad5-nCoV	CanSino Biologics	Phase 2	Tongji Hospital; Wuhan, China	CanSino Biologics
Adjuvant recombinant vaccine	Anhui Zhifei, Institute of Microbiology of the Chinese Academy of Sciences	Phase 2		
BBIBP-CorV	Beijing Institute of Biological Products; Sinopharm	Phase 1/2	Henan Provincial Center for Disease Control and Prevention	Ministry of Science and Technology, China
GX-19	Genexine	Phase 1/2		GenexineGenexine
Gam-COVID-Vac	Gamaleya Research Institute, Acellena Contract Drug Research and Development	Phase 1/2	Various	Gamaleya Research Institute, Health Ministry of the Russian Federation
Self-amplifying RNA vaccine	Imperial College London	Phase 1/2	Imperial College London	UK Secretary of State for Health
LUNAR-COV19	Arcturus Therapeutics and Duke-NUS Medical School	Phase 1/2	Duke-NUS Medical School, Singapore	Arcturus
ZyCoV-D	Zydus Cadila	Phase 1/2	Zydus Cadila	

Source: WHO, https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines, accessed 18 Aug 2020

latform		Candidate vaccines (r	Candidate vaccines (no. and %)		
PS	Protein subunit	18	30%		
VVnr	Viral Vector (non-replicating)	9	15%		
DNA	DNA	8	13%		
IV	Inactivated Virus	8	13%		
RNA	RNA	7	12%		
VVr	Viral Vector (replicating)	4	7%		
VLP	Virus Like Particle	2	3%		
VVr + APC	VVr + Antigen Presenting Cell	2	3%		
LAV	Live Attenuated Virus	1	2%		
VVnr + APC	VVnr + Antigen Presenting Cell	1	2%		

Lessons learned from key contributing factors to the success of Thailand Health System in controlling the 1st wave of the COVID-19 pandemic

- Strong health care system, especially at the primary care level,
- Long-term investment in health infrastructure and human resources for health (HRH) development by the government,
- High quality of health services, disease surveillance and disease control at the community and national levels,
- Unity and strong collaboration between government and private sector, with good cooperation from Thais and other sectors,
- Leadership and prompt responses by the Thai government.