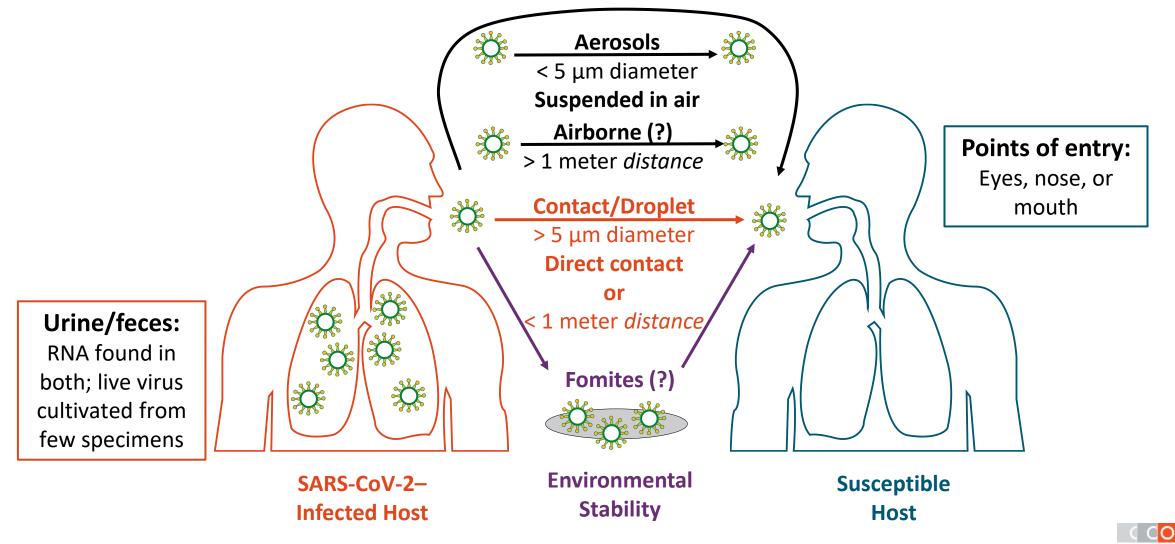

Adeeba Kamarulzaman Dean, Faculty of Medicine

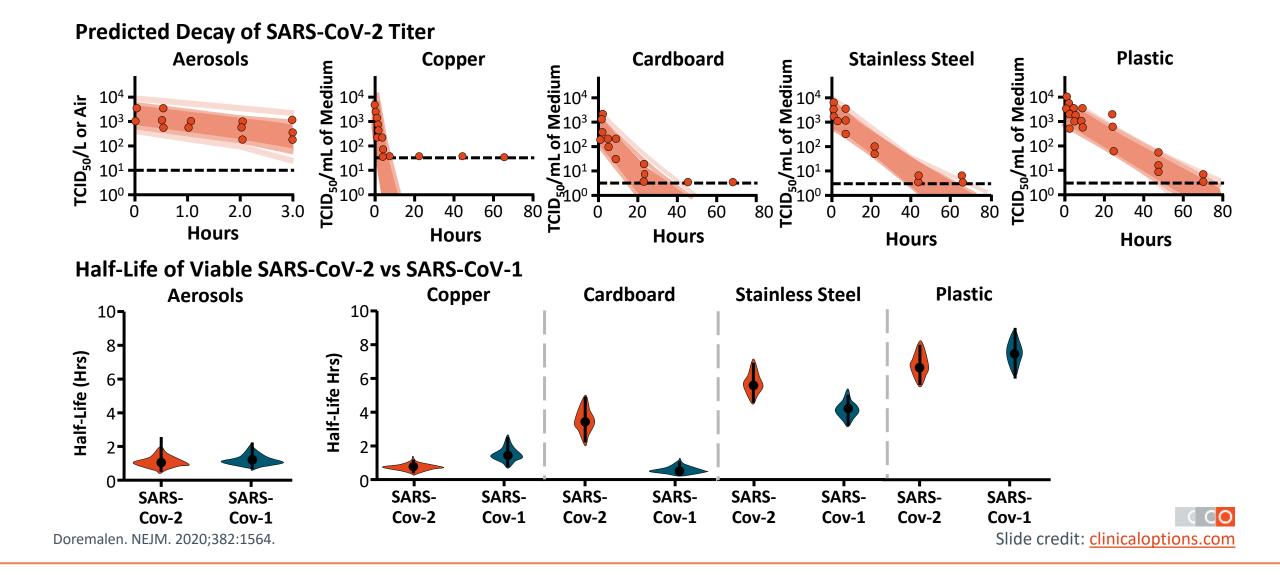
-

KES POSITIF MENGIKUT NEGERI (setakat 9/11/2020,12 PM)


myhealthkkm

Situasi Semasa Pandemik COVID-19 Di Malaysia

Dikemaskini sehingga 09 November 2020, 12.00pm


Jumlah Keseluruhan	Kes Import: 5	Jumlah Kes Sembuh (Discaj)	Jumlah Kes Aktif	Jumlah Kematian
Kes		29579 +1345	11308	294 +8
41181	Kes Tempatan: 967	71.8%	ICU Bantuan Pemafasan	0.7%
+972		Daripada Keseluruhan Kes	86 31	Daripada Keseluruhan Kes

Proposed Routes of SARS-CoV-2 Transmission

Galbadage. Front Public Health. 2020;8:163. WHO. Scientific Brief. July 9, 2020.

SARS-CoV-2: Aerosol and Surface Viability

Key Considerations on Modes of SARS-CoV-2 Transmission

- Person-to-person considered predominant mode of transmission, likely via respiratory droplets from coughing, sneezing, or talking^[1,2]
 - Airborne transmission suggested by multiple studies, but frequency unclear in absence of aerosol-generating procedures in healthcare settings^[2]
- Virus rarely cultured in respiratory samples > 9 days after symptom onset, especially in patients with mild disease^[5]

https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
 WHO. Scientific Brief. July 9, 2020. 3. Wölfel. Nature. 2020;581:465. 4. Zou. NEJM. 2020;382:1177.
 WHO. Scientific Brief. June 17, 2020. 6. ACOG. COVID-19 FAQs for Obstetrician-Gynecologists, Obstetrics.

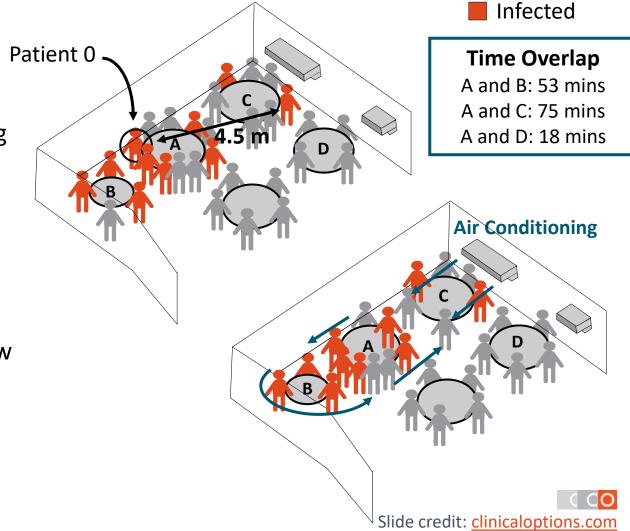
Timing of SARS-CoV-2 Transmission Based on Symptoms

- Prospective study of lab-confirmed COVID-19 cases (n = 100) and their close contacts (n = 2761) in Taiwan^[1]
 - Paired index-secondary cases (n = 22) occurred more frequently with exposure just before or within 5 days of symptom onset vs later
- Pre-symptomatic infections
 - Accounted for 6.4% of locally acquired infections in a study in Singapore (N = 157)^[2]
 - Modelling study of transmission in China (n = 154) estimated that 44% of transmissions may have occurred just before symptoms appeared^[3]

- A recent systematic review and metaanalysis estimated that the proportion of total infections that are truly asymptomatic range from 6% to 41% (pooled estimate of 15%)^[4]
 - Asymptomatic transmission rates ranged from 0% to 2.2% vs symptomatic transmission rates of 0.8% to 15.4%

Cheng. JAMA Intern Med. 2020;180:1156.
 Wei. MMWR. 2020;69:411.
 He. Nature Medicine. 2020;26:672.
 Byambasuren. MedRxiv. 2020;[Preprint]. Note: this study has not been peer reviewed.

SARS-CoV-2 Transmission in Enclosed vs Outdoor Settings


- Study in Japan traced contacts of 110 people with COVID-19 in ten indoor clusters and assessed the environment in which transmission between contacts occurred^[1]
 - 27 primary cases generated secondary cases (24.6%)
- Odds that a primary case transmitted SARS-CoV-2 in an enclosed environment 18.7 x higher compared with odds of estimated transmission rates in an open-air environment (95% CI: 6.0-57.9)^[1]
- 6 of 7 superspreading events (to 3 or more people) occurred in enclosed environments (OR vs open-air environments: 32.6; 95% CI: 3.7-289.5)^[1]
- Consistent with cluster in Germany from indoor work meeting, cluster from a ski chalet France, cluster from choir practice in the US, and church- and hospitalassociated clusters in South Korea^[2-5]

1. Nishiura. medRxiv; [Preprint]. Note: this study has not been peer reviewed. 2. Hijnen. Emerging Infectious Diseases. 2020; [Epub]. 3. Danis. Clin Infect Dis. 2020; 71:825. 4. Hamner. MMWR. 2020; 69:606. 5. Shim. Int J Infect Dis. 2020; 93:339.

SARS-CoV-2 Transmission: Recirculated Air and Poor Ventilation

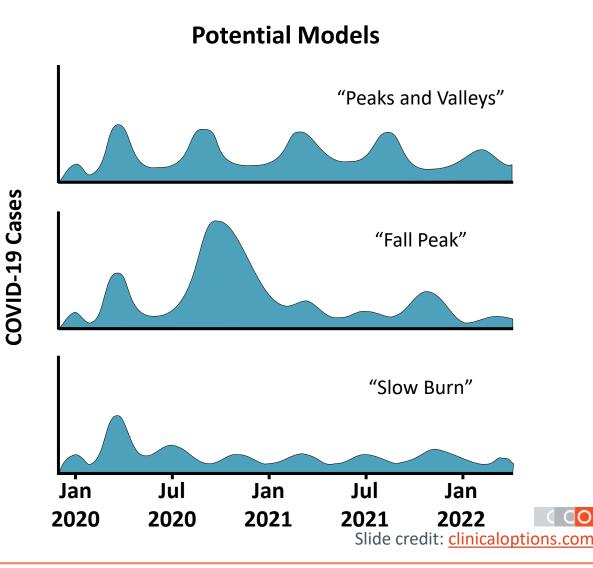
- 3 families (A, B, and C) ate lunch at a restaurant on January 24, 2020 at 3 neighboring tables
 - 10 of those sitting at these tables (including the index case) were later found to have been infected with sARS-CoV-2 at the restaurant
 - None of the waiters or 68 patrons at the remaining 15 tables became infected
 - Authors note that these results do not show that long-range aerosol transmission can occur in *any* indoor space, but that transmission may occur in crowded/poorly ventilated spaces

Li. medRxiv; [Preprint]. Note: this study has not been peer reviewed.

Summary of SARS-CoV-2 Transmission in Various Settings

- Crowded enclosed spaces facilitate SARS-CoV-2 transmission
- Transmission rates in enclosed spaces appear to be correlated with duration of exposure
 - Longer duration \rightarrow greater risk of transmission
- Airborne transmission hypothesized
 - Biologically plausible → aerosol generated with greater than normal force or if air current moves aerosol > 1 meter and droplets remain intact

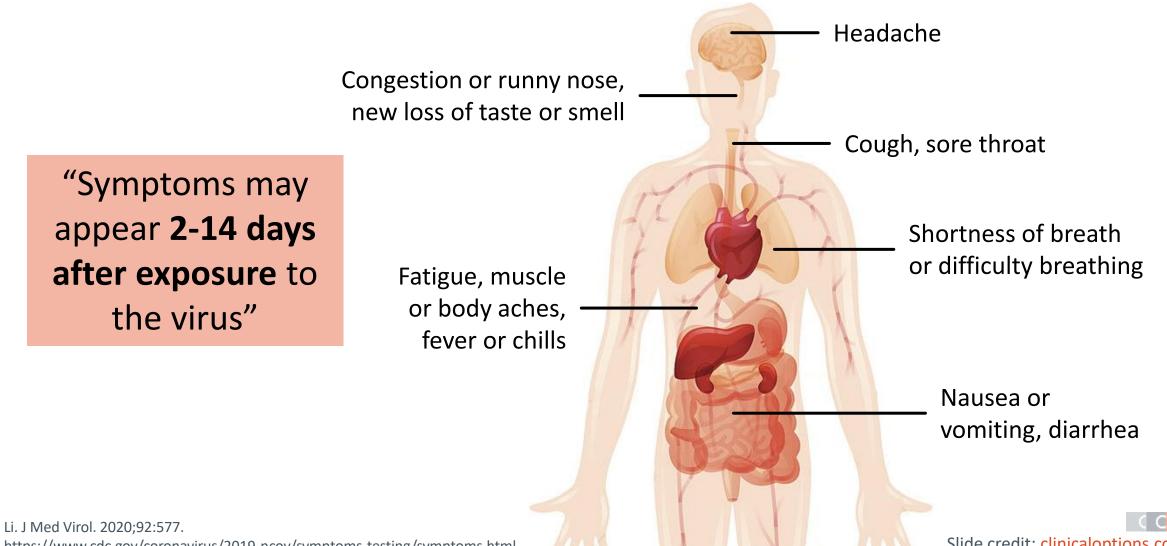
Efficacy of Social Distancing & Face Coverings in Prevention of SARS-CoV-2 Transmission


https://www.nytimes.com/interactive/2020/04/14/science/coronavirustransmission-cough-6-feet-ar-ul.html

https://www.nytimes.com/interactive/2020/10/30/scien ce/wear-mask-covid-particles-ul.html

Projecting Postpandemic SARS-CoV-2 Transmission

- Recurrent outbreaks likely after initial, most severe pandemic period
 - Interval and height of coming waves will depend on multiple factors, including control measures
 - Prepare for ≥ 18-24 mos of significant COVID-19 activity with periodic hot spots across diverse geographies

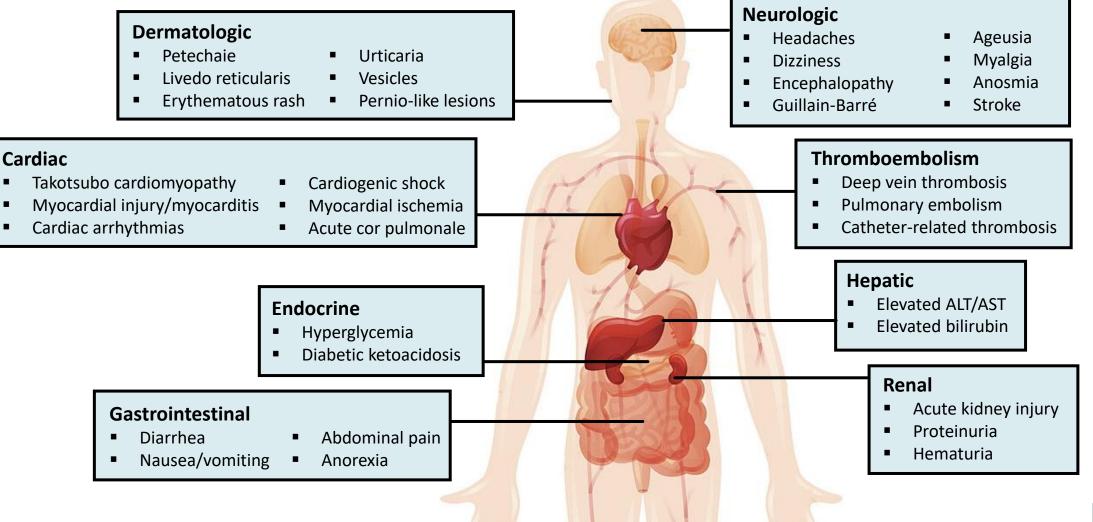


COVID-19 Elimination in New Zealand

"Rapid, science-based risk assessment linked to early, decisive government action was critical."

Feb 26, 2020	Mid March 2020	Mar 26, 2020	Early May 2020	June 8, 2020	Post Elimination
First COVID- 19 case diagnosed in New Zealand	Recognized insufficiency of current testing and contact tracing capacity; considered	Implemented stringent countrywide lockdown (ie, 7 wks of national stay-	Last known COVID-19 case isolated, marking end of community spread	Pandemic over, 103 days after first case Alert Level 1	Only known cases among international travelers, kept in quarantine 14 days
	switch from mitigation to elimination approach	at-home order) Alert Level 4			1569 <i>,</i> Deaths : 22 ty : 4 per 1 million

Primary Symptoms of COVID-19

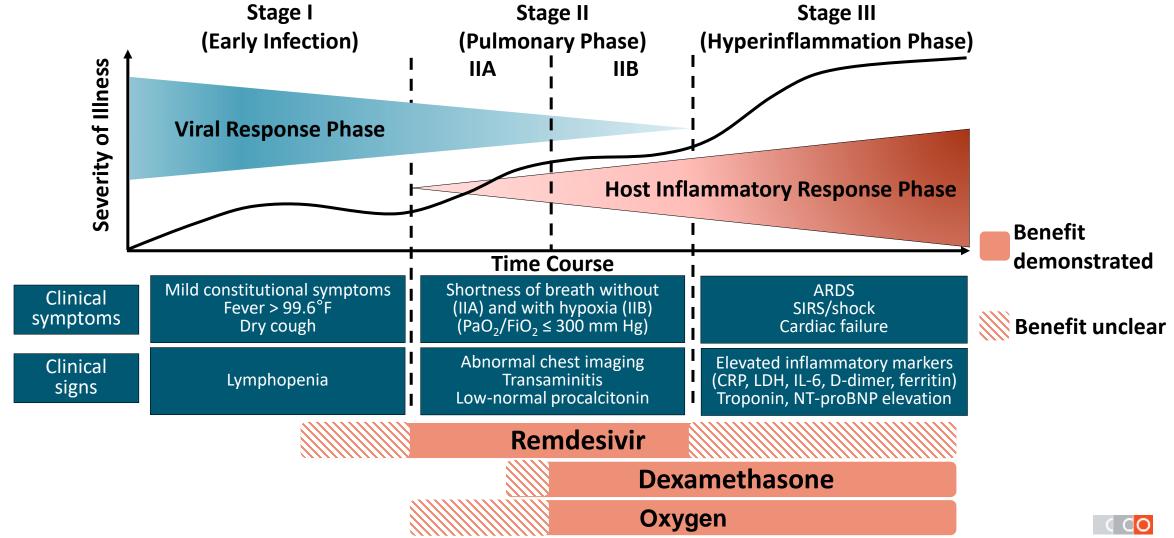

https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

COVID-19 Clinical Presentation May Vary by Age, Sex

- Observational study of Europeans with mild-to-moderate COVID-19 (ie, no ICU admission) via standardized questionnaire during March 22-April 10, 2020 (N = 1420)^[1]
 - Mean duration of symptoms (n = 264): 11.5 ± 5.7 days
 - Ear, nose, throat complaints more common in young patients; fever, fatigue, loss of appetite, diarrhea in elderly patients (P < .01)
 - Loss of smell, headache, nasal obstruction, throat pain, fatigue more common in women; cough, fever in men (P < .001)
- Among 17 fatal COVID-19 cases detailed by the China National Health Commission, median time from first symptom to death: 14 days (range: 6-41)^[2]
 - Numerically faster in older patients: 11.5 days if ≥ 70 yrs vs 20 days if < 70 yrs (P = .033)

Symptom, ^[1] %	N = 1420	
Headache	70.3	
Loss of smell	70.2	
Nasal obstruction	67.8	
Asthenia	63.3	
Cough	63.2	
Myalgia	62.5	
Rhinorrhea	60.1	
Taste dysfunction	54.2	
Sore throat	52.9	
Fever (> 38°C)	45.4	

Extrapulmonary Manifestations of COVID-19: Which of These Return or Last?

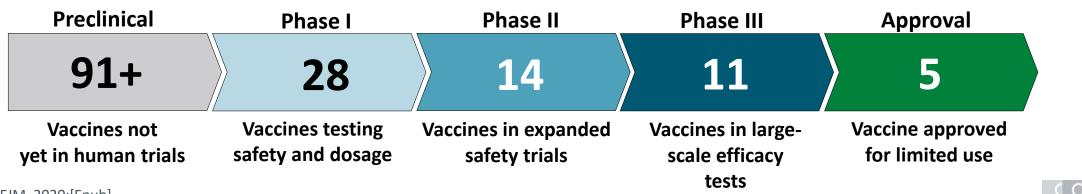

Gupta. Nat Med. 2020;26:1017.

NIH Guidelines: Defining a COVID-19 Severity Spectrum

Stage	Characteristics		
Asymptomatic or presymptomatic infection	 Positive test for SARS-CoV-2 but no symptoms 		
Mild illness	 Varied symptoms (eg, fever, cough, sore throat, malaise, headache, muscle pain) but no shortness of breath, dyspnea, abnormal imaging 		
Moderate illness	 SpO₂ ≥ 94% and lower respiratory disease evidenced by clinical assessment or imaging 		
Severe illness	 SpO₂ < 94%, PaO₂/FiO₂ < 300, respiratory rate > 30 breaths/min, or lung infiltrates > 50% 		
Critical illness	 Respiratory failure, septic shock, and/or multiorgan dysfunction 		

NIH COVID-19 Treatment Guidelines. Management of persons with COVID-19. Last updated October 9, 2020.

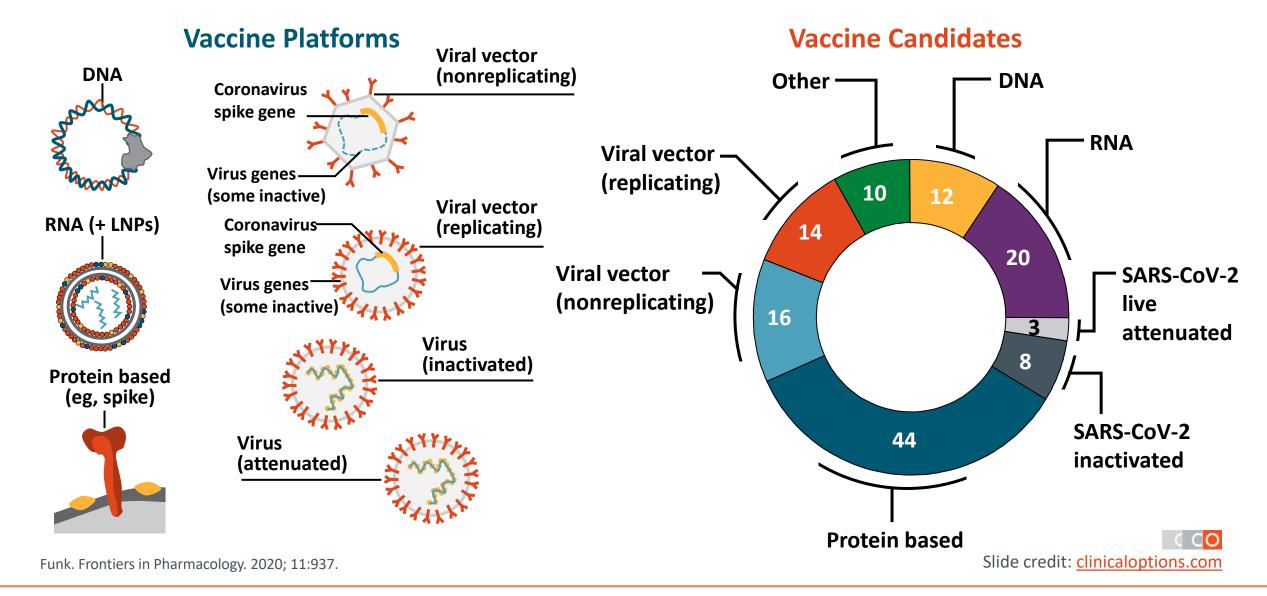
COVID-19 Therapies Predicted to Provide Benefit at Different Stages


Siddiqi. J Heart Lung Transplant. 2020;39:405.

Vaccine Development

Vaccine Development Pathway

- Traditional vaccine development pathway^[1]
 - Target discovery/validation, preclinical stage, manufacturing development, clinical assay optimization: 3-8 yrs
 - Phase I (safety), phase II (safety/immunogenicity), phase III (safety/efficacy) clinical trials: 2-10 yrs
 - Regulatory review: 1-2 yrs



SARS-CoV-2 Vaccine Candidates in Development^[2]

1. Heaton. NEJM. 2020;[Epub].

2. The New York Times. Coronavirus Vaccine Tracker. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html

Vaccine Candidates in Development for SARS-Cov-2

Before COVID-19 vaccines can be delivered, several important challenges must be overcome:

- The vaccines must be proven safe and effective in large (phase III) clinical trials.
- A series of independent reviews of the efficacy and safety evidence
- Individual countries must decide whether to approve the vaccines for national use and develop policies for how to use the vaccines in their country based on the WHO recommendations.
- The vaccines must be manufactured in large quantities, which will be a major and unprecedented challenge – all the while continuing to produce all the other important life-saving vaccines already in use.
- As a final step, vaccines will be distributed through a complex logistical process, with rigorous stock management and temperature control.

Manage your risks

- Consider where you are going
- How close you will be to other people
- How long you will be there.
- Avoid crowded places and events
- Poorly ventilated indoor locations
- Prolonged contact with others.
- Open windows when indoors to increase the amount of outdoor air.
- Avoid touching surfaces, especially in public settings
- Frequently clean your hands with soap and water, or an alcohol-based hand rub.