

NATIONAL AUTOMOTIVE POLICY (NAP) 2020

MINISTRY OF INTERNATIONAL TRADI

OUTLINE OF NAP 2020

- Background and Key Achievements of NAP 2014
- National Automotive Vision
- Malaysian Vehicle Project
- Framework & Objectives of NAP 2020
- New Elements in NAP 2020
- Targets
- CMV
- Conclusion

BACKGROUND AND KEY ACHIEVEMENTS OF NAP 2014

BACKGROUND OF NAP

	POLICY DRIVEN		VISION DRIVES POLICY
	\$		
SUPPLY CHAIN INTEGRATION	INVESTMENTS PROMOTION	GREEN AND SUSTAINABILITY	CONNECTED MOBILITY
NAP 2006 (2006-2009)	NAP 2009 (2009-2014)	NAP 2014 (2014-2020)	NAP 2020 (2020-2030)
ADOPTED POLICY	REVIEWED	FOCUSED	ENHANCED
Introduced to transform the domestic automotive industry and integrating it into the increasingly competitive regional and global industry network.	Reviewed to enhance the capability and competitiveness of the domestic automotive industry.	Focused on developing Malaysia as the hub for Energy Efficient Vehicle (EEV)	Enhance Malaysia's automotive industry in the era of digital industrial transformation.

RM48.6 BIL WORTH OF GDP CONTRIBUTION (MANUFACTURING)

RM10.05 BIL OF TOTAL INVESTMENTS (2014 TO 2018)

247,177 EMPLOYMENT IN AUTOMOTIVE INDUSTRY (2014 TO 2018)

62% TIV EEV PENETRATION IN 2018 (FROM 14.1% IN 2014)

RM58.7 BIL LOCAL CONTENTS USED (2014 TO 2018)

RM12.1 BIL COMPONENTS EXPORTED IN 2018 (FROM RM4.7 BILLION IN 2014)

405 VENDORS CAPABLE TO BE OEMS' SUPPLIERS IN 2018 (FROM 277 IN 2014)

- **LEVEL 5: 55 COMPANIES**
- **LEVEL 4: 130 COMPANIES**
- **LEVEL 3: 405 COMPANIES**

598,704 UNITS OF TOTAL INDUSTRY VOLUME (TIV) (2018)

564,971 UNITS OF TOTAL PRODUCTION VOLUME (TPV) (2018)

RM2.08 BIL WORTH OF CBU VEHICLES (2018)

RM523.1 MIL WORTH OF REMANUFACTURED AUTOMOTIVE PARTS AND **COMPONENTS (2018)**

ESTABLISHMENT OF TWO AUTOMOTIVE SPECIALIZED DESIGN AND ENGINEERING CENTERS (MALAYSIA TECHNOLOGY CENTRE AND NETC) (2014-2018)

NAP 2020

NATIONAL AUTOMOTIVE VISION

NAP 2020: NATIONAL AUTOMOTIVE VISION

- To become a regional leader in manufacturing, engineering, technology and sustainable development in the automotive sector
- The National Automotive Vision will support the establishment and development of existing projects and Malaysian Vehicle Project

MALAYSIAN VEHICLE PROJECT

Support for PROTON, PERODUA and MODENAS to be continued.

FRAMEWORK AND OBJECTIVES OF NAP 2020

NAP 2020 FRAMEWORK

THE FRAMEWORK OF THE NAP IS SUPPORTED BY THE IMPLEMENTATION OF THESE DOCUMENTS:

NAP 2020		
 National Roadmap for Automotive & Mobility Value Chain (NRAMVC) National Roadmap for Automotive & Mobility Technology (NRAMT) National Roadmap for Automotive & Mobility Talent (NRAMTa) National Roadmap for Automotive Aftermarket (NRAA) 	 5. National Blueprint for Automotive Mobility as a Service (NBAMaaS) 6. National Blueprint for Automotive Robotics (NBAR) 7. National Blueprint for Automotive Internet of Things (IoT) (NBAIoT) 	

NAP 2020 OBJECTIVES

Develop NxGV technology ecosystem to make Malaysia the regional hub for NxGV production.

Expand automotive sector participation in MaaS sector.

Ensure local automotive industry is ready with new automotive paradigm closely related to IR4.0 development.

Ensure whole ecosystem benefits from the spin-off of NxGV implementation.

Reduce vehicle carbon emission by improving fuel economy level in Malaysia by 2025.

NEW ELEMENTS IN NAP 2020

5 LEVELS OF VEHICLE AUTONOMY

NEXT GENERATION VEHICLE (NxGV)

- NxGV vehicle with EEV status and achieve at least Level 3 Automation (Conditional Automation).
- Development of standards by 2021 to ensure market penetration by 2025.

Source: Society of Automotive Engineer - SAE J3016

STANDARDS TO BE DEVELOPED FOR NxGV

NEXT GENERATION VEHICLE (NxGV)

Autonomous, Automated And Connected Vehicles (AACV) Development	Electric Vehicle Interoperability Centre (EVIC)	Energy Efficient Vehicle (EEV) and Next Generation Vehicles (NxGV) specifications
 Establishment of AACV in specifying its safety requirements for AACV testbed. Covering few vehicle categories in Malaysia with regards to the intelligent mobility and automation level features. 	 EV Charging protocol Energy management system for EV ecosystem Safety usage of the critical components 	 Revise definition of EEV and NxGV for wider scope – all vehicle category i) Passenger Vehicle ii) Commercial Vehicle iii) Motorcycle

MOBILITY AS A SERVICE (MaaS)

MaaS - concept of integrating various types of transport services to centralized mobility services.

Use of IR 4.0-related technology applications especially AI, Big Data Analytics (BDA) and IoT will enable the implementation of NxGV and MaaS.

INDUSTRIAL REVOLUTION 4.0 (IR 4.0)

TARGET OF NAP 2020

Establishment of Technology Academy (Automotive & Overall Mobility).

21

MONITORING AND REPORTING

- 1. Develop and monitor the local automotive industry will continue to be led by MITI as the custodian of NAP.
- 2. Monitoring and reporting of NAP 2020 implementation will continue via the Malaysian Automotive Council with YBM MITI as the Chairman and appointed members from Government and industry players.

CONNECTED MOBILITY VISION

Data mining, analysis & analytics

CURRENT FACILITIES

ESTABLISHMENT OF CENTRES OF EXCELLENCE (COE) - TECHNOLOGY CENTRES

| MALAYSIA TECHNOLOGY CENTRE

he Malaysia Technology Centre is a technology commercialisation centre to undertake technology transfer, validation and adoption of automation practices. The academy is also a one stop centre or hub for Industry 4.0 Human Capital Development in automotive and connected mobility ecosystem, bridging industry players, academia, training institutions, students and government agencies.

| NATIONAL EMISSION TEST CENTRE (NETC)

N ational Emission Test Centre (NETC) is an independent entity and recognised as a national laboratory. It is owned by Malaysia Automotive Robotics and IoT Institute (MARii), an agency under the Ministry of International Trade and Industry (MITI).

NETC provides testing facilities in measuring vehicle emission pollutants and fuel consumption. NETC is the most advanced emission testing facility in the ASEAN region (measures up to Euro 6d Emission Standard - WLTP).

AUTOMOTIVE DESIGN CENTRE

he Automotive Design Centre is established with the purpose of enhancing the implementation of Industry 4.0 in the Malaysian automotive industry specifically in the areas of design engineering, simulation and prototyping.

It is an open sharing Industry 4.0 platform, whereby any OEM and vendor from various tiers can leverage on the hardware and software available, such as Fused Deposited Modelling (FDM) and Selective Laser Sintering (SLS) for additive manufacturing, Augmented Reality, High Performance Computing Server and more.

The Centre also enables the automotive industry to conduct simultaneous engineering between the OEMs and their vendors during the product development stage. This will assure quality and improved productivity of new model development, thus ensuring good user-experience in the finished product.

	LIST OF TECHNOLOGY	DEVELOPMENT PRO	DJECTS
L6 DTAL ROJECTS	Development of Advanced Electrode and Electrolytes for Lithium-Ion Battery (LiB)	Lithium-ion Battery Material Manufacturing Scale up and Process Optimization	Plastic Injection Mould Design Optimisation
() 8.07	Battery Charge, Mechanical and Thermal Management System Development	Modular Electric Bus Driveline Systems Bus Tracking Systems	Component Section from AHSS Tool Wear Preduction Model on the Stamping of AHSS and UHSS
ROJECTS	Lithium Ion Battery Module Packaging and Testing Next Generation Battery	Market Intelligence and Technology Assessment (MITA) 2030	3R's Recyclability, Recoverability, Reusability
	Technology Roadmap Development Lightweight Plastic Glazing for the	ATM Diecasting Demonstration Trials	Automotive Composites Manufacturing Capability and Quality
DJECTS ADY TO BE MMERCIALISED	Automotive Industry	Plastic Injection Mould Process Optimisation	

CONNECTED MOBILITY GENERAL ECOSYSTEM

NxGV will be commucating with the whole ecosystem to further improve it's operation which include sensing, cognition, decision and action.

NxGV: Definition

In the NAP 2020, EEV technology will be further enhanced towards NxGV which is defined as Energy Efficient Vehicle (EEV) powertrain and meet at least Level 3 of Automated, Autonomous and Connected Vehicle (AACV)*

	LEV	EL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	
What does the human in	You <u>are</u> driving whenever these driver support features are engaged – even if your feet are off the pedals and you are not steering		You are not driving when these automated driving features are engaged – even if you are seated in —the driver's seatl		1 <u>Handover</u> L3: AACV feature will request handover		
the driver's seat have to do?	You must constantly supervise these support features; you must steer, brake, or accelerate as		When the feature requests,	These automate features will not	d driving require you to	L4/5: AACV feature will not request handover	
	needed to main	an salety		You must drive	take over driving)	2 Operation Condition
These are driver support features			These are au	itomated drivin	g features	L3/L4: Preset	
What do these features do?	These features are limited to providing warnings and momentary assistance	These features provide steering OR brake/ acceleration support to the driver	These features provide steering AND brake/ acceleration support to the driver	These features of vehicle under lim and will not oper required condition	can drive the nited conditions ate unless all nns are met	This feature can drive the vehicle under all conditions	operation will define operation. L5: Unconditional operating parameters (geography/use case)
Example features	 Automatic emergency braking Blind spot warning Lane departure warning 	 Lane centering OR Adaptive cruise control 	 Lane centering AND Adaptive cruise control at the same time 	• Traffic jam chauffeur	 Local driverless taxi Pedals/ steering wheel may or may not be installed 	• Same as L4, but feature can drive everywhere in all conditions	Vehicle Hardware L4/5: Both can have steering wheel/brake L4: Can be controlled by teleoperation.

* To be developed as Malaysian Standards

NxGV : Key Technology Development

Timeline

	2020 20	025	2027	2030 🛶
Services	L2 /L2+/L3 applications for ownership (highway assist, auto lane change, valet parking)	 L3 (auto highway assist, chauffer/summon, and so on) L3 for usership (city pilot, chauffer, geolocalized shuttles, and taxis) 	/summon,	4 R&D vities
Cloud Platform	Data storage and annotation	Time uncritical data processing (prec V2P) Data convergence from in-vehic application	lictive sensing, V2I, cle and mapping	nvergence ehicle/map service
Software Platform	Deterministic s/w clusters for each ADAS application	Al for core AACV software [Object Classification, path planning] + deter s/w for time critical computing	ministic Driver health a wellbeing – fitt tracking and emergency se	and ness arvices
Hardware Platform	Multiple redundancy and application-specific sensors (Radar, camera, LiDAR, and so on)	Sensor fusion for all ADAS/AACV ap and cross-redundancy between sens (LiDAR + camera localization, radar - camera annotation, and so on)	plications ors + + weather sensi	s and low l ng
E/E Platform	Individual ECUs per applica and multiple protocols (CAN Flexray, Ethernet)	ECU (ADAS ECU, Infotainment ECU) and protocol (CAN FD, Ethernet) consolidation	Centralized and dece E/E architecture (dou controllers and smar sensors)	entralized main t
Chassis Platform	Modifying existing platforms redundancies	be to add Dedicated mounting point for mechanical and electrical redundancies for AACV applications (L3)	Fully flexible and sca platform capable of enabling all levels of (L1–L5)	alable f AACV
	Next-generation focus	Future focus		BERSEKUTU

MALAYSIA AS NxGV TECHNOLOGY FRONTIER

CRITICAL COMPONENT DEVELOPMENT

ligence 2

PHASE 1		PHASE 2
Continuation of NAP 2014	2020 - 2024	2025 - 2
 Engine transmission, control system Tool, Die and Mould (TDM) Aluminium and other Non-Ferrous Casting Design engineering and prototyping Vehicle, sub-system and component testing Automotive grade steel Engineering Plastics 	 Big Data Analytics (BDA) Internet of Things (IoT) Additive Manufacturing Advanced Material Battery Management System (BMS) Thermal Management System (TMS) Battery Pack & Capacity Recycling Processes Light Detection and Ranging (LiDAR) Cloud Computing Cybersecurity System Integrator Artificial Intelligence 1 On-board Charging Charging Infrastructure 	 Complex neti Detection an (RADAR) Computing V Controller an Controller Recorder Advanced Co Protocol Stimulation D Autonomous Cobot Augmented F Reality Artificial Intel

	PHASE 3	
027	2028 - 2030	
vork of Radio	Advanced tooling	
Ranging	Machine Learning	
	Powertrain (Fuel Cell)	
sion Sensor	Nano- Material	
d Cloud-based	 Charging Infrastructure - mass deployment of ultra fast charging 	
mmunication	 Modular based battery swapping technology 	
igital Twin	Converter/Inverter	
Robot and	Driving motor	
	Interoperability	
eality/Mixed	 Vehicle to Everything (V2X) 	

icle to Everything (V2X communication module

CONCLUSION

- 1. Formulated to continue the development of local automotive industry and its overall ecosystem.
- 2. To ensure the realisation of the National Automotive Vision.
- Introduction of new elements in technology are crucial in ensuring the local automotive industry continues to grow and remain competitive.
- Create new opportunities not only focusing on the automotive sector but also the services sector.