

J J

ENGINEERS

MALAYSIA'S PUBLIC TRANSPORTATION SECTOR & REVIVING MALAYSIA'S INFRASTRUCTURE PRIVATISATION

Malaysia's Engineering DNA

20 JULY 2020

HSS ENGINEERS BERHAD

Registration No. 201501003232 (1128564-U)

MALAYSIA'S PUBLIC TRANSPORTATION SECTOR & REVIVING MALAYSIA'S INFRASTRUCTURE PRIVATISATION

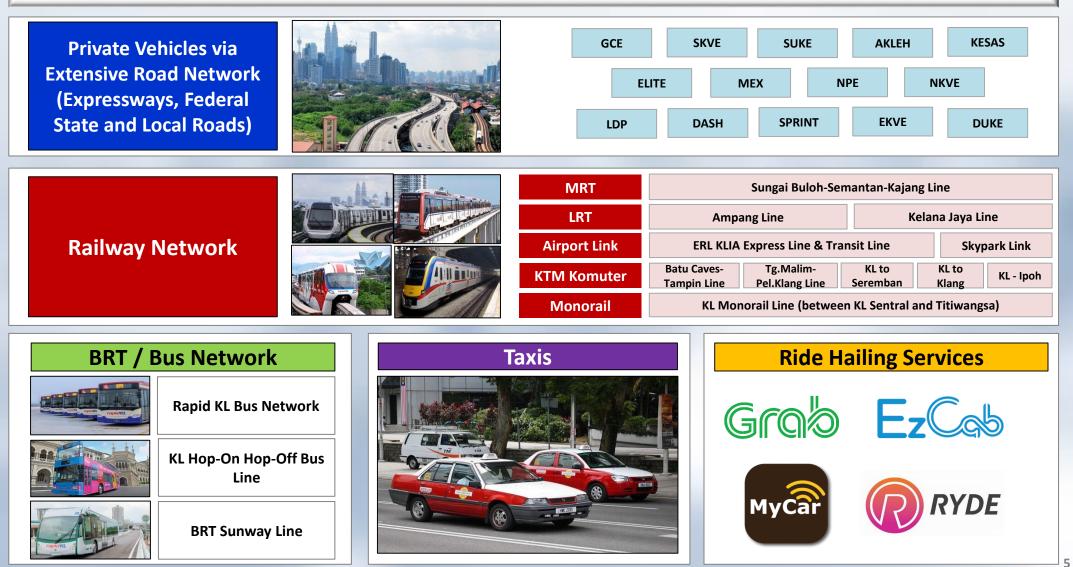
- 1. BACKGROUND
- 2. KEY PUBLIC TRANSPORTATION PROJECTS IN MALAYSIA
- 3. ECONOMIC VS FINANCIAL
 - > PUBLIC TRANSPORTATION (going back to basics)
- 4. SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA
- 5. CONCLUSION

BACKGROUND

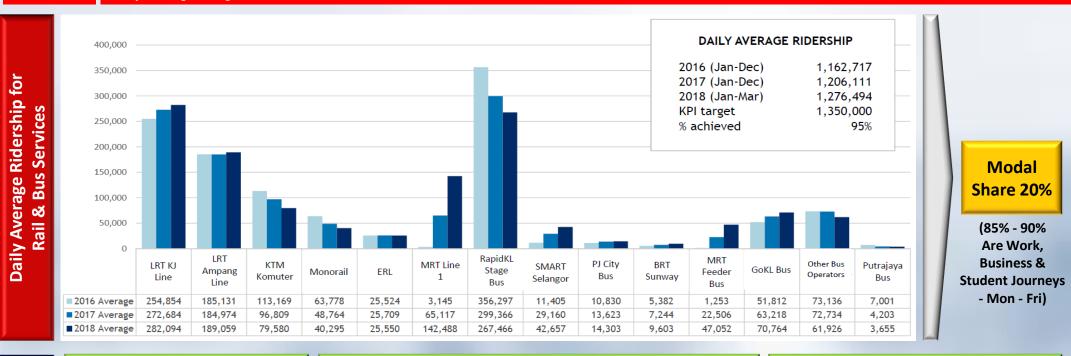


MALAYSIA'S PUBLIC TRANSPORTATION SECTOR & REVIVING MALAYSIA'S INFRASTRUCTURE PRIVATISATION

BACKGROUND HISTORY OF PUBLIC TRANSPORT IN MALAYSIA


ENGINEERS Malaysia's Engineering DNA

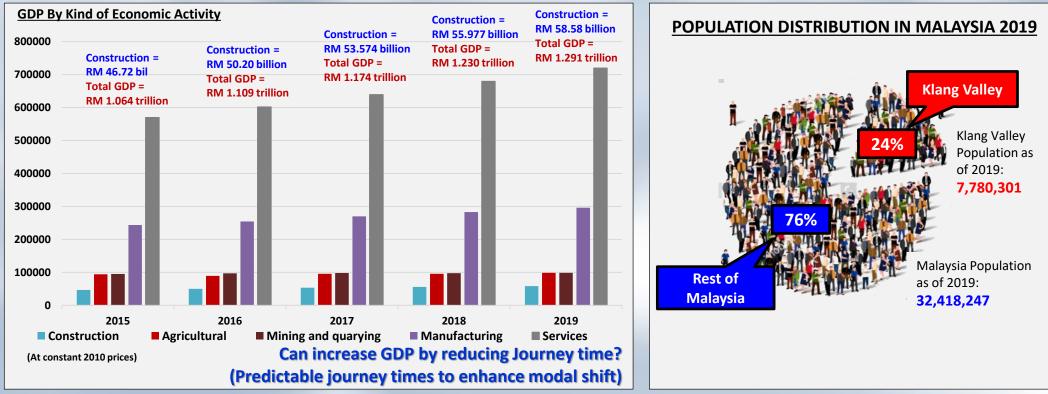
BACKGROUNDPUBLIC TRANSPORT IN THE KLANG VALLEY, MALAYSIA


ENGINEERS Malaysia's Engineering DNA

VARIOUS MODES OF TRANSPORTATION SERVE THE GREATER KLANG VALLEY.

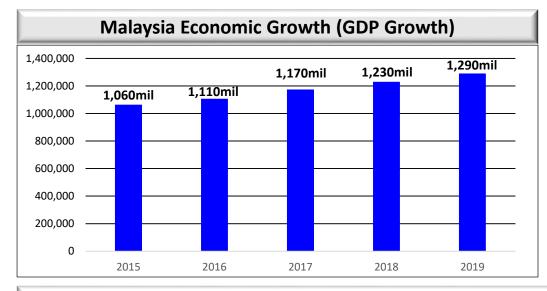
BACKGROUND CURRENT SCENARIO IN URBAN KLANG VALLEY

Malaysia's Engineering DNA



	Economic	Environment Safety		ÿ	
National Transport Policy	The cost of congestion in GKL: 1.1% - 2.2% of GDP in 2016 equivalent to RM6,144 person/year In Kuala Lumpur, 10% of household income is used for transport Compared to 4% in Tokyo and Hong Kong	Total carbon emission: 7.9 tonne/capita in 2011 in Malaysia compared to average for higher middle income countries at 5.4 tonne/capita	The carbon emission in the transport sector is largely from land transport, constituting 90% (48,200 ktonne) & 67% is from cars	Total fatality: 24 Fatality rate for every 100,000 population	Compared to: 10.7 in Korea 33.5 in Thailand 19.7 in Indonesia

BACKGROUND URBAN POPULATION GROWTH


- Urban population in Malaysia was 75.37%. (2016)
- GDP growth & population expansion : Unprecedented growth Urban transportation landscape.
- Klang Valley Focus of urban transport schemes. Penang/ Johor Bahru (BRT, RTS) are under planning / implementation.

Source: Economic Outlook 2019, MOF

BACKGROUND GDP GROWTH IN URBAN CITIES

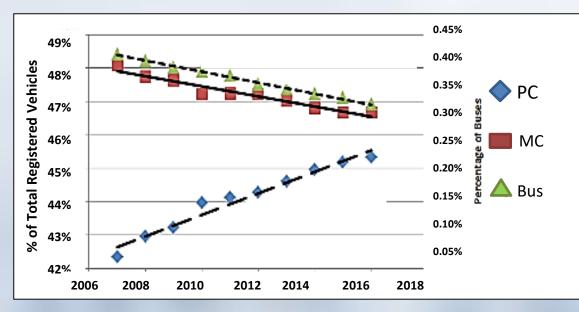
ENGINEERS Malaysia's Engineering DNA

- % p.a GDP growth from 2015 to 2019
- Forecast GDP growth of 4.9% in 2019
- High levels of congestion Impact on GDP
- Serious toll on the quality of life and urban productivity.

Top 5 States with Highest GDP Contribution to Malaysian Economy

State or Federal Territory	2010 GDP (RM Mil)	2011 GDP (RM Mil)	2012 GDP (RM Mil)	2013 GDP (RM Mil)	2014 GDP (RM Mil)	2015 GDP (RM Mil)	2016 GDP (RM Mil)
💶 Selangor	177,718	187,434	200,906	212,645	226,964	239,968	280,698
🚃 Kuala Lumpur	113,095	122,890	131,514	140,534	152,380	160,388	190,075
🗙 Sarawak	87,131	92,700	94,013	98,089	102,318	106,063	121,414
Johor 🔤	74,102	78,946	84,050	87,974	93,665	98,880	116,679
Penang	52,946	55,827	58,353	61,324	66,200	69,844	81,284

Source :


- i. Department of Statistics, Malaysia
- ii. Analysing Vehicular Congestion Scenario in Kuala Lumpur Using Open Traffic, Journal of Electrical Engineering Vol. 10, No. 3 June 2018

Urban Cities contributed a majority portion of 62% of the overall Malaysian GDP in 2016

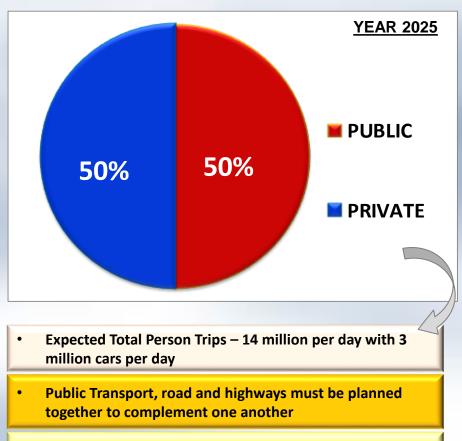
Best Targets to increase GDP through journey time savings

BACKGROUND TRAFFIC GROWTH IN URBAN CITIES IN MALAYSIA

ENGINEERS Malaysia's Engineering DNA

Top 5 States in Malaysia with Highest No. of Registered Vehicles in 2018

State	Private Cars	Public Service Vehicles (PSV)		Goods Vehicles
Johor	1,498,587		20,365	66,183
Federal Territories	3,987,468		78,752	122,509
Selangor	1,157,268		24,273	104,724
Penang 1,130,601		9,586	26,710	
Sarawak	813,569		5,834	71,782
Others	4,701,304	1	46,225	813,836
Total	13,288,797		185,035	1,205,744


Urban Cities Contributes to 56.3% of Registered Vehicles

• Significant population and economic growthincrease in the number or registered vehicles.

Source :

.

- i. Ministry of Transport Malaysia
- ii. Journal of Traffic and Logistics Engineering Vol. 3, No. $m{1}$

Modal Shift - Planned & Driven by Policies

• Public Transport as the People's Choice for Mobility

- National Target
 - Modal share currently 20-25%; target at 40% by 2030 (NKRA) Greater KL

KEY PUBLIC TRANSPORTATION PROJECTS IN MALAYSIA

MALAYSIA'S PUBLIC TRANSPORTATION SECTOR & REVIVING MALAYSIA'S INFRASTRUCTURE PRIVATISATION

KEY PUBLIC TRANSPORTATION PROJECTS IN MALAYSIA BEING IMPLEMENTED

GEMAS TO TUMPAT

REHABILITATION

ENGINEERS

Malaysia's Engineering DNA

KLANG VALLEY DOUBLE TRACKING PHASE 1

Total Length
Stations
Phase 1A
Phase 1B
Phase 2
Phase 3
Phase 4

: 42 km : 16 Stations : Rawang – Simpang Batu : KL – Simpang Bangsar : Simpang Batu – KL : Sentul – Simpang Batu : Simpang Bangsar – Salak

Selatan

Package A Gemas – Mentakab	:
Package B Mentakab – Gua Musang	:
Package C Gua Musang – Tumpat	::

	: 122KM
3	: 199KM
	: 206KM

MASS RAPID TRANSIT (MRT) 2

ocation:	: Malaysia
otal Length:	: 52.2km
tations	: 36
peed	: 80kph
levated:	: 38.75 km (24.08 mi)
Inderground	: 13.5 km (8.4 mi)
	1,435 mm (4 ft 8 1/2
	in) standard gauge
rack Electrification	: Third rail, 750 VDC

KEY PUBLIC TRANSPORTATION PROJECTS IN MALAYSIA BEING IMPLEMENTED

ENGINEERS

Malaysia's Engineering DNA

LIGHT RAIL TRANSIT (LRT) 3

Travel Time
Total Length
Stations
Provisional Stations
Integrated Stations
Modular
Speed
Capacity
Frequency

: < 60Min
: 37KM
: 20
:5
:2
: 3 Cars Accessible End to End
: 80 km/h Operational Speed
: 18,630 Passengers P/H Per Direction
: 6 Minutes during peak hours

KLANG VALLEY DOUBLE TRACKING PHASE 2

Number of stations
Traction
Formation
Route Length

- : 16 stations
- : Electric
- : Double-track
- : Package A 43.20km
- : Package B 59.20km
- : Package C 46.30km

KEY PUBLIC TRANSPORTATION PROJECTS IN MALAYSIA BEING IMPLEMENTED

ENGINEERS Malay

Malaysia's Engineering DNA

GEMAS-JOHOR BAHRU RAIL (DOUBLE TRACKING & ELECTRIFICATION)

Travel Time - KL Sentral-JB Sentral:	
Frequency	
Seating Capacity	
Track Distance	
Stations	
Designed Speed	

- : 3 hours and 30 minutes
- : 22 train services a day
- : 346 passengers per train
- : 192km
- : 11 stations
- : 160Km/h

ISKANDAR BRT

Transit type Number of lines

Began operation Operator(s)

Number of vehicles

System length

- : Bus rapid transit
- : 72 (3 trunk, 26 direct and 42 feeder BRT route)
- : Expected 2021
- : Causeway Link, Maju, S&S International, City Bus, JB Central Line, Kembara City
- : Articulated 18m (Trunk route), 12m bus (Direct route) and 8m bus (Feeder route)
- : 51 km (32 mi) First Phase

KEY PUBLIC TRANSPORTATION PROJECTS IN MALAYSIA UPCOMING PROJECTS

Malaysia's Engineering DNA ENGINEERS

MASS RAPID TRANSIT (MRT) 3

:26

Total Stations
Elevated Stations
UG Stations
Services
Conduction system
Line length
Elevated
Underground
Track gauge
Operating speed

:7
: 19
: Orbital
: Automated and driverless
: 40 km (25 mi)
: 8 km (5.0 mi)
: 32 km (20 mi)
: 1,435 mm
: Max 100 km per hour

Stations

Services

Daily ridership

Number of tracks

Line length

Track gauge

Electrification

Operating speed

JOHOR – SINGAPORE RTS

: 2
:1
: 10,000 passengers per hour
: 4.2 km (2.6 mi)
: 2
: 1,435 mm (4 ft 8 1⁄2
in) standard gauge
: 750 V DC Third Rail
: 80 km/h (50 mph)

Elevated :91.6 km At-grade : 256.1 km Tunnel : 2.3 km Station Line length **Operating speed Rolling stock**

C10

BANGI-PUTRAJAYA

LEGEND

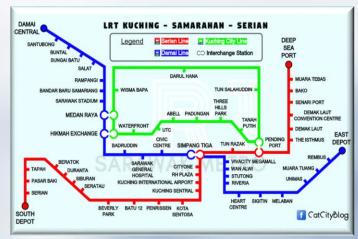
CIQ

: 8 stations : 350 km : 320 km/h (200 mph) : 10-car trainsets capacity for up to 100 passengers per car

KL – SINGAPORE HIGH SPEED RAIL (HSR)

KEY PUBLIC TRANSPORTATION PROJECTS IN MALAYSIA UPCOMING PROJECTS

ENGINEERS


Malaysia's Engineering DNA

BAYAN LEPAS LRT

NORTH & SOUTH FREIGHT BYPASS

KUCHING TRANSIT

Stations :27 **Services** : George Town – Bayan Lepas

- **Planned opening Owner** Character : Elevated : Island A Depot(s) Line length
 - : 2024; 4 years' time : Penang state government : Phase 1: 23.5 km (14.6 mi)
 - : Phase 2: 6.4 km (4.0 mi)

: Total Length – 138 km	
Serendah to Port Klang	
– 60km	
Port Klang to Seremban	
– 78km	
: Meter Gauge	

- : Double Track

service)

: 140kph (commuter

- : Electric
- **Operating Speed**

Total Length

Type of Gauge

Track

Traction

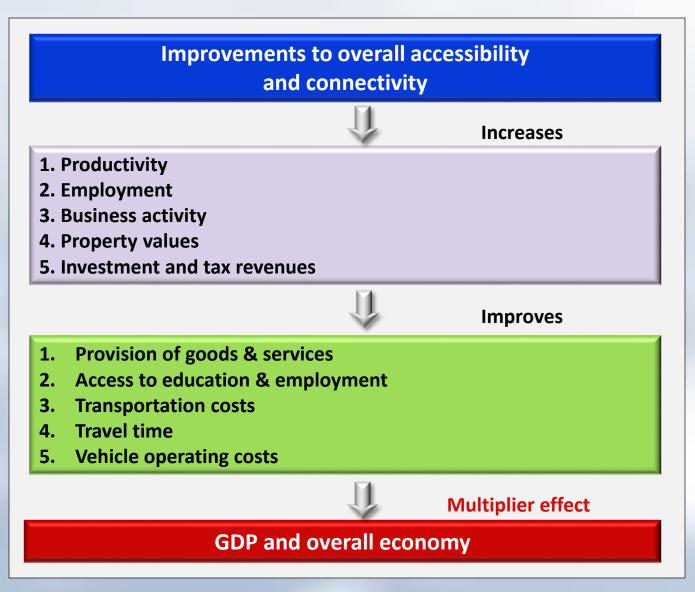
Station Line 1: Line 2: : 90kph (freight service) Line 3:

Elevated

At-grade

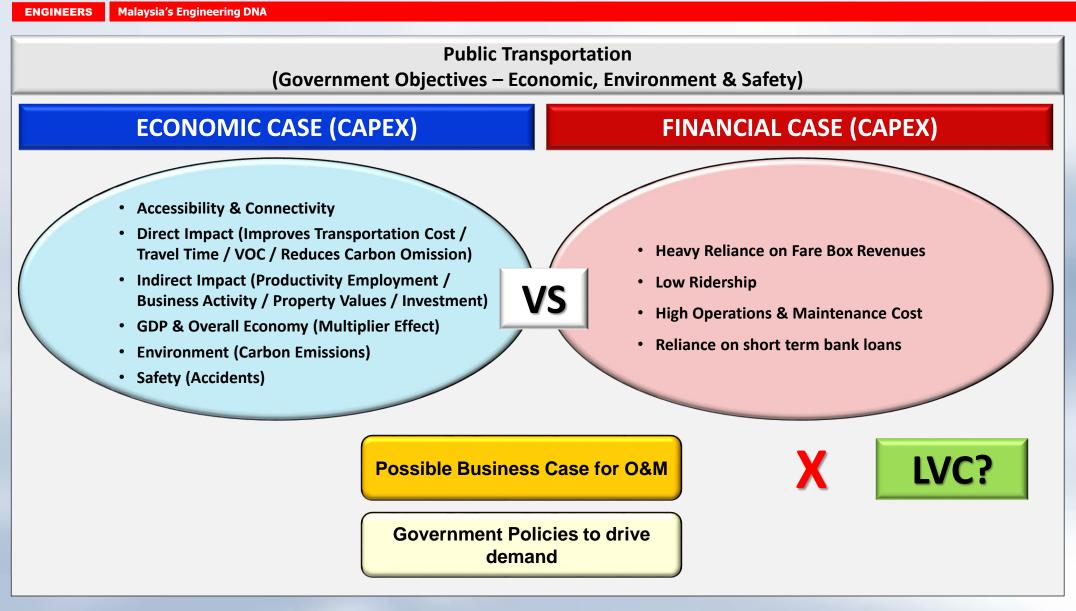
Tunnel

- : 104.71 km
- : 52.38 km
- : n/a
- : 67 stations
- : Kota Samarahan to Damai via Sungai Batu, 62.4 km, 28 stations.
- : Serian to Senari via
- Siburan, 82 km, 26 stations
- : City Dispersal Line, 12.8 km, 13 stations, tram system.


ECONOMIC VS FINANCIAL PUBLIC TRANSPORTATIONgoing back to basics

MALAYSIA'S PUBLIC TRANSPORTATION SECTOR & REVIVING MALAYSIA'S INFRASTRUCTURE PRIVATISATION

ECONOMIC VS FINANCIAL PUBLIC TRANSPORT AND THE ECONOMY


ENGINEERS Malaysia's Engineering DNA

ECONOMIC VS FINANCIAL OVERVIEW

ECONOMIC VS FINANCIAL SUPPLY AND DEMAND – GOVERNMENT POLICIES

ERS Malaysia's Engineering DNA

Government Policies to check imbalance in between supply and demand & vice versa

Private Vehicle Ownership

Congestion Charges/Area Road pricing

• Urban Parking Charges

• Property Taxes within Urban Transport Corridor

Can only be done in Stages with Improved Public Transportation (Last Mile Connectivity)

Target Modal Shift (In stages) (TVM)

- Motorcycles?
- Private Cars

ECONOMIC VS FINANCIAL LAND VALUE CAPTURE

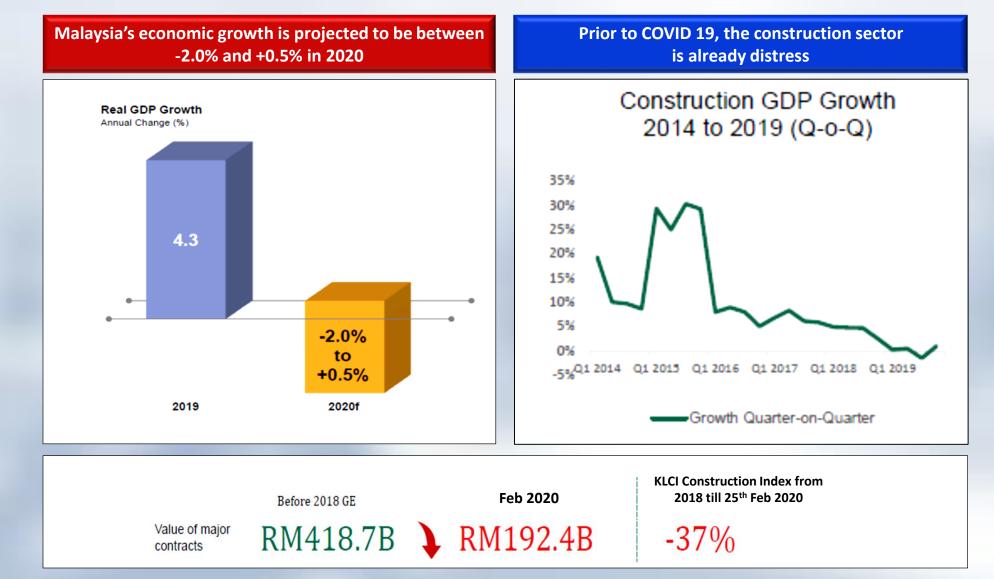
• MECHANISM A	> VALUE CAPTURE THROUGH THE MAINSTREAM TAXATION SYSTEM
• MECHANISM B	> SPECIAL FEES & LEVY
• MECHANISM C	> DIRECT PROPERTY—RAIL AGENCY AS DEVELOPER IN THE 'EAST ASIAN' STYLE
• MECHANISM D	> AUCTION OF DEVELOPMENT RIGHTS
• MECHANISM E	> A COMPREHENSIVE TOD AGENCY (WITH VALUE CAPTURE CAPABILITIES)

ENGINEERS

Malaysia's Engineering DNA

ENGINEERS Malaysia's Engineering DNA

Identify project with Best Economic Value (Direct/In-direct/Induced)
Possible Business Case - " O&M"


SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA

MALAYSIA'S PUBLIC TRANSPORTATION SECTOR & REVIVING MALAYSIA'S INFRASTRUCTURE PRIVATISATION

SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA IMPACT OF COVID-19 ON MALAYSIA'S ECONOMY & CONSTRUCTION SECTOR

ENGINEERS Malaysia's Engineering DNA

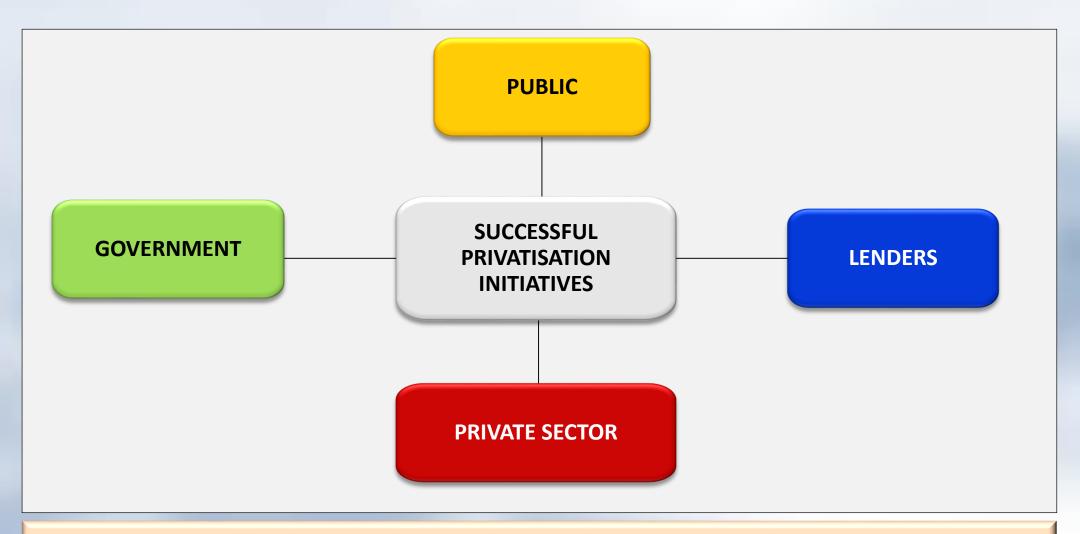
Source : World Bank/Bank Negara Malaysia

SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA OVERVIEW

ERS Malaysia's Engineering DNA

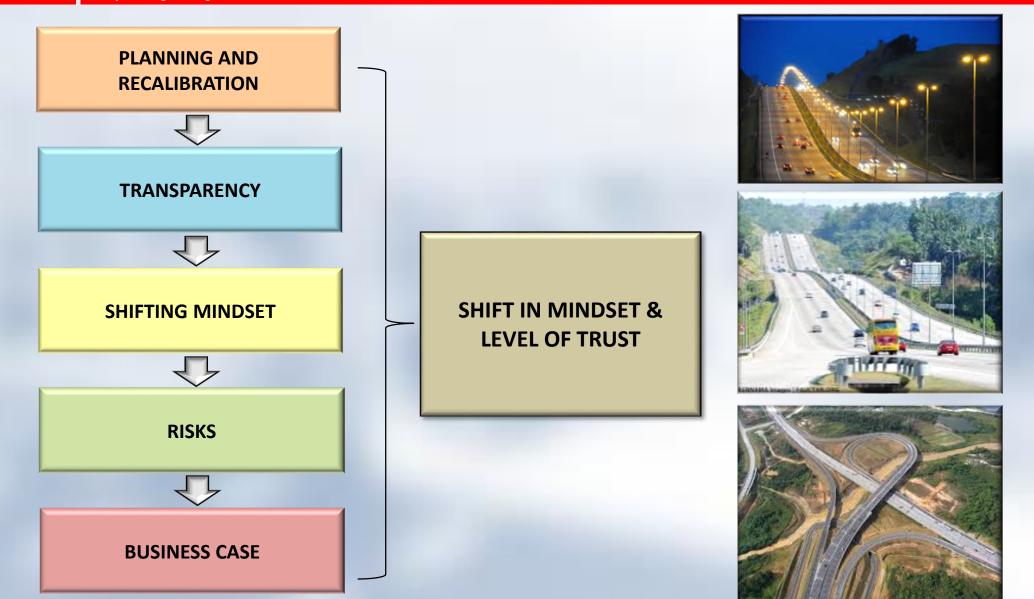
- Covid-19 pandemic Additional strain on the Government's financial resources.
- Relook at privatization of urban public transport infrastructure projects without straining financial resources.
- Government spending and private sector investment will drive the economy.

• Prioritization of 'Business Case' Infrastructure Projects

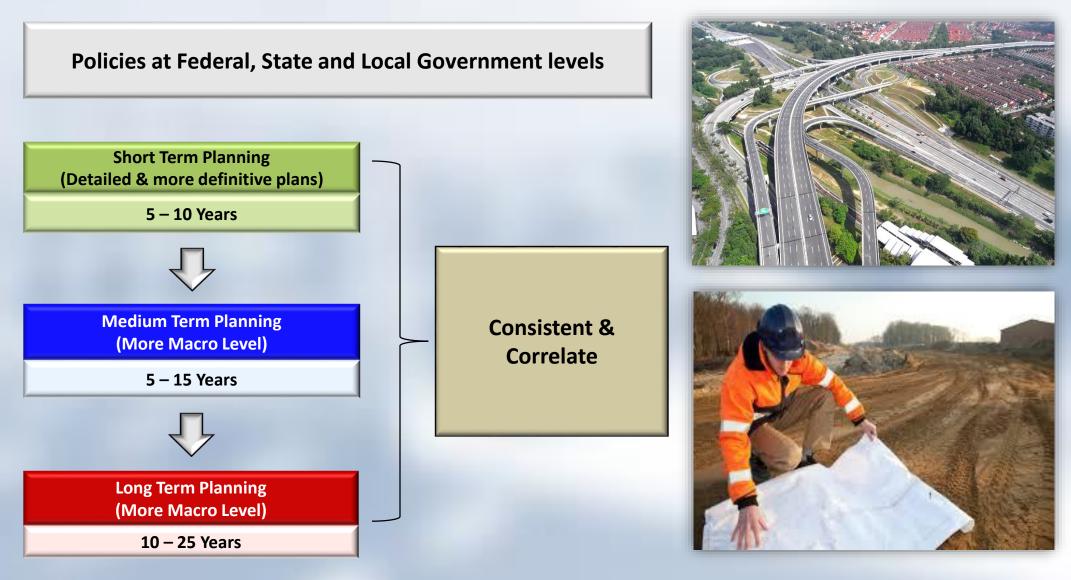


SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA OVERVIEW

ENGINEERS Malaysia's Engineering DNA


שש

KEY STAKEHOLDER INVOVLEMENT


SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA PRIVATISATION OVERVIEW

ENGINEERS Malaysia's Engineering DNA

SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA PLANNING & RECALIBRATION

ENGINEERS Malaysia's Engineering DNA

SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA PLANNING & RECALIBRATION

ENGINEERS Malaysia's Engineering DNA

Policies :- Adjust Gaps " Demand vs Supply" (Need to Recalibrate every five (5) years

- Development Plan Basis
- Government agencies essential requirements (leading to formulation of 5-year plan).

Recalibrated at all levels :- planned demand and planned supply within acceptable range

Scenario planning :

- Low case
- Base case
- High case

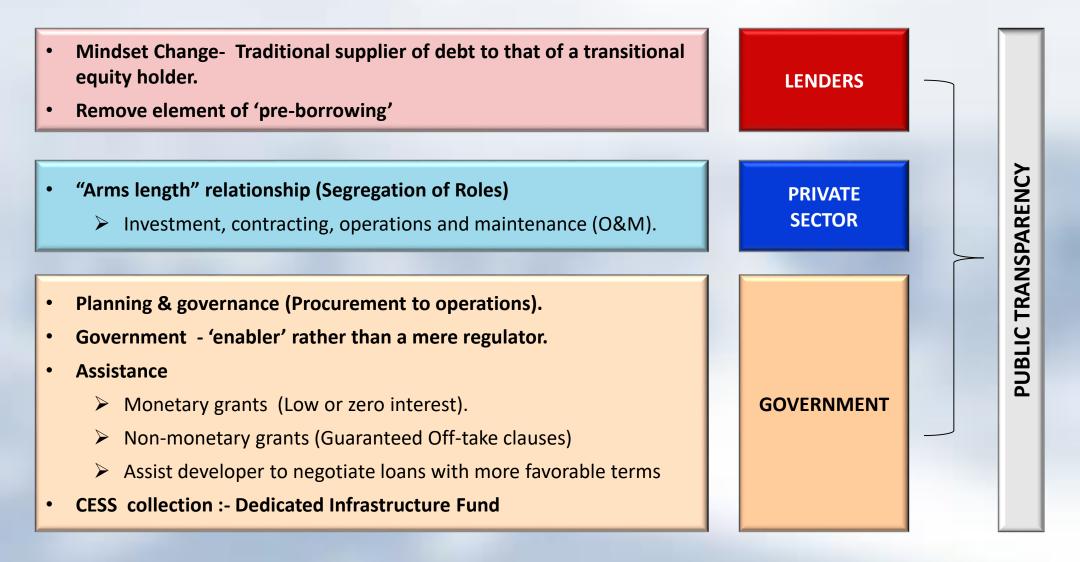
Effect strategy and timeline for implementation of planned supply

SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA TRANSPARENCY

RS Malaysia's Engineering DNA

In line with Federal, State & Local Government plans (Short, medium and long term)

Tendered out (External experts / consultants)


Baseline business case for commercial evaluation.

Appointed consultants must be retained (concession period) – "Check & Balance"

• Post Signing of Concession Agreements (CA) - Public viewing

SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA SHIFTING MINDSET

INEERS Malaysia's Engineering DNA

ENGINEERS Malaysia's Engineering DNA

RISKS

Notional transference of risks

Acceptable returns - concessionaires "behave" professionally.

"Decent/ acceptable" profits - mitigating & managing risks – appropriate reward

ERS Malaysia's Engineering DNA

• Continuous Identification of projects:- Range of 'Business Cases'.

• Roll Out – Consider Short / Medium & Long term horizon

• All levels of Government - Coordinated Actions

• Suitable, well designed with sufficient returns Projects - Attract private sector investments.

• Suitability of Projects – Guidance from the Consultants

SUSTAINABLE PRIVATISATION MODEL IN MALAYSIA BUSINESS CASE

GINEERS Malaysia's Engineering DNA

- Privatization Considerations
 - **Gradient Sector :** Financially acceptable to Private Sector ?
 - Adequate financial incentive to participate ?
 - Benefits, returns and costs to private and public investors ?
 - Benefits, returns and costs of a project Four primary stakeholders ?

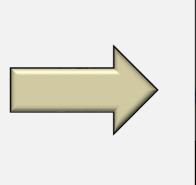
Review of <u>Business Case</u>

- **Capital expenditure (CAPEX)** Does not apply for most if not all "Urban transport"
- **Operating expenditure (OPEX)** Partial or Full
- **Government support instruments Grants and subsidies. (Policy?)**

Independent consultants reviews are critical

- **Complex web of stakeholders**
- **Calibrated Money flows (Financially Viable & Economically Beneficial)**
- **Professional project assessment with clarity for decision makers**

CONCLUSION



MALAYSIA'S PUBLIC TRANSPORTATION SECTOR & REVIVING MALAYSIA'S INFRASTRUCTURE PRIVATISATION

- Financial Case for Public Transportation Applies for O&M only, NOT for CAPEX (Mostly)
- Government Support Models (Polices & Funding) Essential for Projects with Economic Case
- Land Value Capture (LVC) Possible Future Funding ??

- Planning & Recalibration
- Transparent Structured Approach
- Shifting and Changing Mind-sets
- Assigning Appropriate Risks to Relevant Primary Stakeholders
- Viable Business Case

Sustainable Infrastructure Privatization Model

hGC

ENGINEERS

THANK YOU

Malaysia's Engineering DNA

20 JULY 2020